103k views
19 votes
Further mathematics: Find the derivative of the function x^2 y + (xy)^3 +3x=0 at (-1 , 3)​

User Raphnguyen
by
8.4k points

2 Answers

4 votes

Explanation:

x²y + (xy)³ + 3x = 0

x²y + x³y³ + 3x = 0

Using implicit differentiation and product rule:

2xy + x²(dy/dx) + 3x²y³ + 3y²x³(dy/dx) + 3 = 0

x²(dy/dx) + 3x³y²(dy/dx) = -3x²y³ - 2xy - 3

dy/dx(x²(3xy² + 1)) = -3x²y³ - 2xy - 3

dy/dx = (-3x²y³ - 2xy - 3)/(x²(3xy² + 1))


{ ((dy)/(dx))}^( - 1) _(3) = \frac{( - 3{( - 1)}^(2) ({3})^(3) - 2( - 1)(3) - 3) }{({( - 1)}^(2)(3( - 1){(3)}^(2) + 1)} \\ \\ { ((dy)/(dx))}^( - 1) _(3) = (( -81 + 6 - 3))/(( - 27 + 1)) \: \\ \\ { ((dy)/(dx))}^( - 1) _(3) = ( - 78)/( - 26) \\ \\ { ((dy)/(dx))}^( - 1) _(3) = 3

User Kalana
by
8.6k points
5 votes

Answer:

3.

Explanation:

Implicit differentiation:

x^2 y + (xy)^3 + 3x = 0

x^2 y + x^3y^3 + 3x = 0

Using the product rule:

2x* y + x^2*dy/dx + 3x^2 y^3 + x^3* (d(y^3)/dx) + 3 = 0

2xy + x^2 dy/dx + 3x^2 y^3 + x^3* 3y^2 dy/dx + 3 = 0

dy/dx(x^2 + 3y^2x^3) = (-2xy - 3x^2y^3 - 3)

dy/dx= (-2xy - 3x^2y^3 - 3) / (x^2 + 3y^2x^3)

At the point (-1, 3).

the derivative = (6 - 81 - 3)/(1 -27)

= -78/-26

= 3.

User GKFX
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories