57.2k views
0 votes
The volume of a sphere can be determined by the formula V = 4/3 πr^3, where r is the radius. What is the volume of a sphere with radius 3/2x^3y^–2 in terms of x and y?

User Trying
by
4.7k points

1 Answer

1 vote

Answer:


V = (99)/(7) x^(9)y^(-6)

Explanation:

Given


V = (4)/(3)\pi r^3

Required

Find V when


r = (3)/(2)x^3y^{-2

Substitute
(3)/(2)x^3y^{-2 for r in
V = (4)/(3)\pi r^3


V = (4)/(3)\pi * ((3)/(2)x^3y^(-2))^3

Open bracket


V = (4)/(3)\pi * (3)/(2)^3 * x^(3*3)y^(-2*3)


V = (4)/(3)\pi * (27)/(8) * x^(9)y^(-6)

Simplify the fractions


V = \pi * (9)/(2) * x^(9)y^(-6)

Let


\pi = (22)/(7)

So:


V = (22)/(7) * (9)/(2) * x^(9)y^(-6)


V = (11)/(7) * (9)/(1) * x^(9)y^(-6)


V = (99)/(7) * x^(9)y^(-6)


V = (99)/(7) x^(9)y^(-6)

User Rmirabelle
by
4.9k points