Answer:
The ant has to crawl an approximate distance of 29mm
Explanation:
Given
![Volume = 8792mm^3](https://img.qammunity.org/2022/formulas/mathematics/college/noa40c38z27tvm4011lafrxe9hsswdgtox.png)
--- radius
See attachment
Required
Distance the ant has to crawl (i.e. the slant height)
First, we calculate the height of the hill
The volume of a cone is:
![Volume = (1)/(3)\pi r^2h](https://img.qammunity.org/2022/formulas/mathematics/college/mgwolcv2s0nr1mnfp5lj6fuesc5k1ntpvj.png)
![8792 = (1)/(3) * (22)/(7) * 20^2*h](https://img.qammunity.org/2022/formulas/mathematics/college/gd8kzfrrpx0vful54sv5mkfh4c8f82xl1k.png)
![8792 = (1)/(3) * (22)/(7) * 400*h](https://img.qammunity.org/2022/formulas/mathematics/college/dhzc1k5osvm9kjbttqvmcsf9apc0p4zc7a.png)
![8792 = (22* 400)/(3*7) *h](https://img.qammunity.org/2022/formulas/mathematics/college/vqodpxd9k1ypbman2rsn9ny4opcrg4o54k.png)
Make h the subject
![h = (8792 * 3 * 7)/(22 * 400)](https://img.qammunity.org/2022/formulas/mathematics/college/ppc985fz0aqdmf15v7sthtm7bo7czcentv.png)
![h = (184632)/(8800)](https://img.qammunity.org/2022/formulas/mathematics/college/6v60bfd0wh6k1sdghknngyc8ju501tf4eu.png)
![h = 20.98mm](https://img.qammunity.org/2022/formulas/mathematics/college/f175byqi9snsx9ujrxbrc5ij0chtrbdsu8.png)
To calculate the slant height (s), we apply Pythagoras theorem
![s^2=h^2 + r^2](https://img.qammunity.org/2022/formulas/mathematics/college/u0g1t00rz6u0k1nlarlgsjj4tfudl6rd6g.png)
![s^2=20.98^2 +20^2](https://img.qammunity.org/2022/formulas/mathematics/college/gddskcetayixl7clkln025b0eyqz1kou6d.png)
![s^2=840.1604](https://img.qammunity.org/2022/formulas/mathematics/college/a9mdqo5ok2grab3029z4s1zik5wd1yqm33.png)
![s=\sqrt{840.1604](https://img.qammunity.org/2022/formulas/mathematics/college/rv7l1kwpm1vh4hi8ird8tdz1b2jtl3uuiu.png)
![s=28.9855205232](https://img.qammunity.org/2022/formulas/mathematics/college/addkq2y8p3zmb6uyke2n4wodkwezfe0e3r.png)
--- approximated