46.6k views
13 votes
If
(dy)/(dx) = cos^(2) ((\pi *y)/(4)) and y = 1 when x = 0, then find the value of x when y = 3.

A. 1/8
B. -π/8
C. -8/π

User Okojie
by
8.1k points

1 Answer

2 votes

The ODE


(\mathrm dy)/(\mathrm dx)=\cos^2\left(\frac{\pi y}4\right)

is separable, as


\frac{\mathrm dy}{\cos^2\left(\frac{\pi y}4\right)}=\mathrm dx


\sec^2\left(\frac{\pi y}4\right)\,\mathrm dy=\mathrm dx

Integrate both sides:


\displastyle\int\sec^2\left(\frac{\pi y}4\right)\,\mathrm dy=\int\mathrm dx

In the left integral, substitute u = πy/4 and du = π/4 dy :


\displastyle\frac4\pi\int\sec^2(u)\,\mathrm du=\int\mathrm dx


\frac4\pi \tan(u)=x+C


\frac4\pi\tan\left(\frac{\pi y}4\right)=x+C

Given that y = 1 when x = 0, we have


\frac4\pi\tan\left(\frac\pi4\right)=C\implies C=\frac4\pi

since tan(π/4) = 1. So the ODE has a particular solution of


\frac4\pi\tan\left(\frac{\pi y}4\right)=x+\frac4\pi

or


\tan\left(\frac{\pi y}4\right)=\frac{\pi x}4+1

Now when y = 3, we have


\tan\left(\frac{3\pi}4\right)=\frac{\pi x}4+1


-1=\frac{\pi x}4+1


-2=\frac{\pi x}4


-8=\pi x


x=-\frac8\pi

making the answer C.

User Brune
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories