46.6k views
13 votes
If
(dy)/(dx) = cos^(2) ((\pi *y)/(4)) and y = 1 when x = 0, then find the value of x when y = 3.

A. 1/8
B. -π/8
C. -8/π

User Okojie
by
3.5k points

1 Answer

2 votes

The ODE


(\mathrm dy)/(\mathrm dx)=\cos^2\left(\frac{\pi y}4\right)

is separable, as


\frac{\mathrm dy}{\cos^2\left(\frac{\pi y}4\right)}=\mathrm dx


\sec^2\left(\frac{\pi y}4\right)\,\mathrm dy=\mathrm dx

Integrate both sides:


\displastyle\int\sec^2\left(\frac{\pi y}4\right)\,\mathrm dy=\int\mathrm dx

In the left integral, substitute u = πy/4 and du = π/4 dy :


\displastyle\frac4\pi\int\sec^2(u)\,\mathrm du=\int\mathrm dx


\frac4\pi \tan(u)=x+C


\frac4\pi\tan\left(\frac{\pi y}4\right)=x+C

Given that y = 1 when x = 0, we have


\frac4\pi\tan\left(\frac\pi4\right)=C\implies C=\frac4\pi

since tan(π/4) = 1. So the ODE has a particular solution of


\frac4\pi\tan\left(\frac{\pi y}4\right)=x+\frac4\pi

or


\tan\left(\frac{\pi y}4\right)=\frac{\pi x}4+1

Now when y = 3, we have


\tan\left(\frac{3\pi}4\right)=\frac{\pi x}4+1


-1=\frac{\pi x}4+1


-2=\frac{\pi x}4


-8=\pi x


x=-\frac8\pi

making the answer C.

User Brune
by
3.3k points