Answer:
![\displaystyle (d)/(dx)[\sec x] = \sec x \tan x](https://img.qammunity.org/2022/formulas/mathematics/college/9veecjam7zc6liv93ehvucogr9obdn5bqp.png)
General Formulas and Concepts:
Pre-Calculus
Calculus
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]:
![\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/hrfl3gpx3dh352g7a9uj6guyxz9uxwhvl3.png)
Explanation:
*Note:
This is a known trigonometric derivative.
Step 1: Define
Identify
![\displaystyle y = \sec x](https://img.qammunity.org/2022/formulas/mathematics/college/ipbhl77fzfb1c3ih877g6g6rb7yd175zkx.png)
Step 2: Differentiate
- Rewrite [Trigonometric Identities]:
![\displaystyle y = (1)/(\cos x)](https://img.qammunity.org/2022/formulas/mathematics/college/n9gr5087wm2zdqt5ls4nrg9wsogvru6chy.png)
- Derivative Rule [Quotient Rule]:
![\displaystyle y' = ((1)' \cos x - 1(\cos x)')/(\cos^2 x)](https://img.qammunity.org/2022/formulas/mathematics/college/8em960kplllqbpo6xa3niuduihzu2145sq.png)
- Basic Power Rule:
![\displaystyle y' = ((0) \cos x - 1(\cos x)')/(\cos^2 x)](https://img.qammunity.org/2022/formulas/mathematics/college/7n22fvdlu8e1ak0iwn305tzwp00kcv3uma.png)
- Trigonometric Differentiation:
![\displaystyle y' = ((0) \cos x + 1(\sin x))/(\cos^2 x)](https://img.qammunity.org/2022/formulas/mathematics/college/v3ps5kpksuspnsg4chgi41kaufkuq0x783.png)
- Simplify:
![\displaystyle y' = (\sin x)/(\cos^2 x)](https://img.qammunity.org/2022/formulas/mathematics/college/i815g5go1qj85wk7u1ekzv5qoaeyen034y.png)
- Rewrite:
![\displaystyle y' = (\sin x)/(\cos x) \cdot (1)/(\cos x)](https://img.qammunity.org/2022/formulas/mathematics/college/jt53frdg88keg6oewe6te832ndmgw7myn4.png)
- Rewrite [Trigonometric Identities]:
![\displaystyle y' = \tan x \sec x](https://img.qammunity.org/2022/formulas/mathematics/college/jcxyr9vos6gehwy71r0fliteeklsb7mfbq.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation