252,228 views
27 votes
27 votes
Prove that : Cos 2A =cot^2-1/cot^2+1​

User Komarkovich
by
2.9k points

1 Answer

11 votes
11 votes

Answer:


\cos(2A) = { \cos }^(2) A - { \sin }^(2) A \\ = { \cos }^(2) A - \frac{1}{ \csc {}^(2) A} \\ \\ = \frac{( { \cos}^(2) A. \csc {}^(2)A ) - 1}{ { \csc }^(2) A} \\ \\ = \frac{( \frac{ { \cos}^(2)A }{ { \sin }^(2) A}) - 1 }{ { \csc }^(2) A} \\ \\ = \frac{ { \cot}^(2)A - 1 }{ { \csc}^(2) A}

but csc²A = cot²A + 1:


= \frac{ { \cot}^(2)A - 1 }{ { \cot }^(2)A + 1 }

# proved

User Shamse Alam
by
2.7k points