Answer:
D
Explanation:
Given a quadratic function in standard form
f(x) = ax² + bx + c ( a ≠ 0 )
• If a > 0 then minimum value
• If a < 0 then minimum value
For
f(x) = x² + 16x + 3
a = 1 > 0 then f(x) has a minimum value
The minimum is the value of the y- coordinate of the vertex.
The x- coordinate of the vertex is
= -
![(b)/(2a)](https://img.qammunity.org/2022/formulas/mathematics/high-school/brftkn382wklvwfqy5iffzkevle3fvyi2b.png)
Here a = 1 and b = 16 , then
= -
= - 8
To find the y- coordinate of the vertex, substitute x = - 8 into f(x)
f(- 8) = (- 8)² + 16(- 8) + 3 = 64 - 128 + 3 = - 61
Thus the function has a minimum value of - 61 → D