Given:
The graph of linear function.
To find:
The slope intercept form of the linear equation from the given graph.
Solution:
The slope intercept form of a linear function is:
![y=mx+b](https://img.qammunity.org/2022/formulas/mathematics/high-school/vx6rl06zg4fbsmfy3o2eukr7b78jm4ngki.png)
From the given graph it is clear that the graph passes through the points (1,300) and (4,800).
The equation of line is
![y-y_1=(y_2-y_1)/(x_2-x_1)(x-x_1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wkwv82bw6qlga765myohf3n6p3g9tbbqs4.png)
![y-300=(800-300)/(4-1)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/y7cejwxaa67ui9nb6oe4p9efouqkz5vpi3.png)
![y-300=(500)/(3)(x-1)](https://img.qammunity.org/2022/formulas/mathematics/college/g3v19mb6gs3gise6qdrlslg1ne4gte86i2.png)
![y-300=(500)/(3)x-(500)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/mkbvclv06yqucbd43ej3bz7fa1ax6ruvz4.png)
Adding 300 on both sides, we get
![y=(500)/(3)x-(500)/(3)+300](https://img.qammunity.org/2022/formulas/mathematics/college/yuivuabh5dxzp6ixec1bkspzsppogb16b8.png)
![y=(500)/(3)x+(900-500)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/n0zlmacqebrnyjfu2e7bu9pkjwxdvbylfs.png)
![y=(500)/(3)x+(400)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/ymo83tbp9wcn7xoikkv4ctiui5sdtn8dpk.png)
Therefore, the required equation is
.