81.7k views
24 votes
The size of a TV is determined by the length of the diagonal of the TV. A 42" TV means the length from one corner to the other is 42 inches. If the diagonal forms a 30 degree angle with the base of the TV, what are the height and width of the TV? *

1 Answer

7 votes

Answer:

length = 5.38 feet

Explanation:

All the eq. can be solved by Phythagoras's theorem

1) Diagonal is 70 inches, height is 42 inches so

70^2 = 42^2 + width^2

width ^2 = 3136, width = 56 inches

2) Base is 2 ft, length of ladder = hypotenuse = 10 ft

Height^2 = 10^2 -2^2 = 96

Height = 9.8 ft

3) Equilateral triangle has a side of 6

If you drop a vertical line from one corner of triangle to opposite side it bisects the side into equal parts. So the length of base is 3

The hypotenuse is 6

So height is sqrt (6*6 -3*3) = sqrt (27) = 3sqrt(3) = 5.2

4) Height = 12, width = 5

Diagonal^2 = 12*12 + 5*5 = 169

Diagonal = 13

5) Plant is 5 ft tall, distance from the ground is 2 ft

length ^2 = 5*5 + 2*2 = 29

length = 5.38 feet

User Bo Chen
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories