Answer:
![x = t](https://img.qammunity.org/2022/formulas/physics/college/cbv35yzmt5sfei7twderkofuce1ksd8gr0.png)
![y = 1 - t](https://img.qammunity.org/2022/formulas/mathematics/college/ob7rmlm4vkuueqqcxjlfvrdy7ag0mejaxj.png)
![z = 2t](https://img.qammunity.org/2022/formulas/mathematics/college/r25brrbzbdqt2uxy922mj8ue0m51lb38vj.png)
Explanation:
Given
![x=t](https://img.qammunity.org/2022/formulas/mathematics/college/66n7wsh5i4aikuu0lk0akyea8lrcfon3ax.png)
![y=e^(-t)](https://img.qammunity.org/2022/formulas/mathematics/college/jm9pollfahlutnhytg6q46ocm7o93b950v.png)
![z=2t-t^2](https://img.qammunity.org/2022/formulas/mathematics/college/r1ikdxxv6h7jqw1k0xsf3sstw8vruw3dwe.png)
(0, 1, 0)
The vector equation is given as:
![r(t) = (x,y,z)](https://img.qammunity.org/2022/formulas/mathematics/college/s8yv3wp9u2h673h80pkiw9lrkq57t3u2pz.png)
Substitute values for x, y and z
![r(t) = (t,\ e^(-t),\ 2t - t^2)](https://img.qammunity.org/2022/formulas/mathematics/college/3rlv9kd7495z9qguxeljk4ce8itirhko4b.png)
Differentiate:
![r'(t) = (1,\ -e^(-t),\ 2 - 2t)](https://img.qammunity.org/2022/formulas/mathematics/college/e82u8r2b7wv2o3lijw5daqf8xupu3fzgfc.png)
The parametric value that corresponds to (0, 1, 0) is:
![t = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/lx3ip2zu3pkxpa4xz10h4293l429vmrzwm.png)
Substitute 0 for t in r'(t)
![r'(t) = (1,\ -e^(-t),\ 2 - 2t)](https://img.qammunity.org/2022/formulas/mathematics/college/e82u8r2b7wv2o3lijw5daqf8xupu3fzgfc.png)
![r'(0) = (1,\ -e^(-0),\ 2 - 2*0)](https://img.qammunity.org/2022/formulas/mathematics/college/i4a0tf58iqndh7nym3870ks0sd5fk9yx79.png)
![r'(0) = (1,\ -1,\ 2 - 0)](https://img.qammunity.org/2022/formulas/mathematics/college/ko7teenchbkfobw0myf3l37xf1wtuzlvhq.png)
![r'(0) = (1,\ -1,\ 2)](https://img.qammunity.org/2022/formulas/mathematics/college/io1ovh4ecigpsv5y5jah4nswjtft3gdhgc.png)
The tangent line passes through (0, 1, 0) and the tangent line is parallel to r'(0)
It should be noted that:
The equation of a line through position vector a and parallel to vector v is given as:
![r(t) = a + tv](https://img.qammunity.org/2022/formulas/mathematics/college/u8hg99ebk1gdpsqr3mfn81iagz249klk1g.png)
Such that:
and
![v = r'(0) = (1,-1,2)](https://img.qammunity.org/2022/formulas/mathematics/college/76l86fapc7rq02u294kqn1yia90v5x44mw.png)
The equation becomes:
![r(t) = (0,1,0) + t(1,-1,2)](https://img.qammunity.org/2022/formulas/mathematics/college/wqnlf2vucbh5vozapn69j2xyerorv7qrsv.png)
![r(t) = (0,1,0) + (t,-t,2t)](https://img.qammunity.org/2022/formulas/mathematics/college/mr9dfjaafl37z99vrjt5idxpqp3iesq0i3.png)
![r(t) = (0+t,1-t,0+2t)](https://img.qammunity.org/2022/formulas/mathematics/college/jrgpfmp7jma0691qxdkzvqqurlf3qgifbv.png)
![r(t) = (t,1-t,2t)](https://img.qammunity.org/2022/formulas/mathematics/college/2ghv6wye2rujac855x8bdor4qs5zlkp8rf.png)
By comparison:
and
![r(t) = (t,1-t,2t)](https://img.qammunity.org/2022/formulas/mathematics/college/2ghv6wye2rujac855x8bdor4qs5zlkp8rf.png)
The parametric equations for the tangent line are:
![x = t](https://img.qammunity.org/2022/formulas/physics/college/cbv35yzmt5sfei7twderkofuce1ksd8gr0.png)
![y = 1 - t](https://img.qammunity.org/2022/formulas/mathematics/college/ob7rmlm4vkuueqqcxjlfvrdy7ag0mejaxj.png)
![z = 2t](https://img.qammunity.org/2022/formulas/mathematics/college/r25brrbzbdqt2uxy922mj8ue0m51lb38vj.png)