53,175 views
12 votes
12 votes
Plz plz solve this. ​

Plz plz solve this. ​-example-1
User Dqm
by
3.1k points

1 Answer

12 votes
12 votes

Explanation:

Disclaimer: When writing this on the paper use the theta symbol, I'm using x since I'm on mobile.

2.

i).


\sin(x) \tan(x) \sec(x) = \tan {}^(2) (x)


\sin(x) \sec(x) \tan(x) = \tan {}^(2) (x)


\sin(x) (1)/( \cos(x) ) \tan(x) = \tan {}^(2) (x)


( \sin(x) )/( \cos(x) ) \tan(x) = \tan {}^(2) (x)


\tan( x) ) \tan(x) = \tan {}^(2) (x)


\tan {}^(2) (x) = \tan {}^(2) (x)

iii).


\sec {}^(2) (x) (1 - \sin {}^(2) ( x ) ) = 1


\sec {}^(2) (x) ( \cos {}^(2) (x) ) = 1


\frac{1}{ \cos {}^(2) (x) } \cos {}^(2) (x) = 1


1 = 1

v).


\cot {}^(2) (a) - \cos {}^(2) (a) = \cot {}^(2) (a) \cos {}^(2) (a)


\frac{ \cos{}^(2) (x) }{ \sin {}^(2) (x) ) } - \cos {}^(2) (x)

Factor out cosine


\cos {}^(2) (x) ( \frac{1}{ \sin {}^(2) (x) } - 1)

Simplify


\cos {}^(2) (x) ( \frac{1 - \sin {}^(2) (x) }{ \sin(x) }


\cos {}^(2) (x( \frac{ \cos {}^(2) (x) }{ \sin {}^(2) (x) } ) =


( \cos {}^(2) ( x ) ( \cot {}^(2) (x) )

User Zineb
by
2.8k points