Answer:
cos(θ) = -0.95
Step-by-step explanation:
Remember the relation:
sin(θ)^2 + cos(θ)^2 = 1
So if we have:
sin(θ) = 0.3
we can replace that in the above equation to get:
0.3^2 + cos(θ)^2 = 1
now we can solve this for cos(θ)
cos(θ)^2 = 1 - 0.3^2 = 0.91
cos(θ) = ±√0.91
cos(θ) = ± 0.95
Now, yo can see that there are two solutions, which one is the correct one?
Well, you can see that the endpoint of the segment that defines θ is on the second quadrant.
cos(x) is negative if the endpoint of the segment that defines the angle is on the second or third quadrant.
Then we can conclude that in this case, the correct solution is the negative one.
cos(θ) = -0.95