144,817 views
29 votes
29 votes
Integrate the following. ∫
84dx

User Pushkar
by
2.7k points

1 Answer

22 votes
22 votes

Answer:


\displaystyle \int {84} \, dx = 84x + C

General Formulas and Concepts:

Calculus

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int {84} \, dx

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {84} \, dx = 84\int {} \, dx
  2. [Integral] Reverse Power Rule:
    \displaystyle \int {84} \, dx = 84x + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integrations

User Activedecay
by
3.0k points