Answer:
a. 0
b. 1.103625 MJ
c. Conserved
d. 1.103625/n MJ where n = The number of forces
Step-by-step explanation:
The mass of the drone, m = 750 kg
The upward lift force = 125% of the weight of the drone
The time it takes the drone to reach a height of 250 m = 25 seconds
a. The mechanical energy = The kinetic energy + Potential energy
Therefore, given that the drone stars motion from the surface and was initially at rest, the mechanical energy at the surface = 0
b. The mechanical energy at height, h = 150 m, ME₁₅₀ = The potential energy gained = m·g·h
Where;
g = The acceleration due to gravity = 9.81 m/s²
∴ ME₁₅₀ = 750 kg × 9.81 m/s² × 150 m = 1103625 J = 1.103625 MJ
c. The mechanical energy is equivalent to the potential energy of the drone at the 150 m height, therefore, it is conserved
d. The work done by the force = The energy gained
Therefore, where there are n number of forces, the work done by each force = 1.103625/n MJ