208k views
18 votes
Prove it please
answer only if you know​

Prove it please answer only if you know​-example-1
User Pjhades
by
7.6k points

1 Answer

6 votes

Part (c)

We'll use this identity


\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\\\\

to say


\sin(A+45) = \sin(A)\cos(45) + \cos(A)\sin(45)\\\\\sin(A+45) = \sin(A)(√(2))/(2) + \cos(A)(√(2))/(2)\\\\\sin(A+45) = (√(2))/(2)(\sin(A)+\cos(A))\\\\

Similarly,


\sin(A-45) = \sin(A + (-45))\\\\\sin(A-45) = \sin(A)\cos(-45) + \cos(A)\sin(-45)\\\\\sin(A-45) = \sin(A)\cos(45) - \cos(A)\sin(45)\\\\\sin(A-45) = \sin(A)(√(2))/(2) - \cos(A)(√(2))/(2)\\\\\sin(A-45) = (√(2))/(2)(\sin(A)-\cos(A))\\\\

-------------------------

The key takeaways here are that


\sin(A+45) = (√(2))/(2)(\sin(A)+\cos(A))\\\\\sin(A-45) = (√(2))/(2)(\sin(A)-\cos(A))\\\\

Therefore,


2\sin(A+45)*\sin(A-45) = 2*(√(2))/(2)(\sin(A)+\cos(A))*(√(2))/(2)(\sin(A)-\cos(A))\\\\2\sin(A+45)*\sin(A-45) = 2*\left((√(2))/(2)\right)^2\left(\sin^2(A)-\cos^2(A)\right)\\\\2\sin(A+45)*\sin(A-45) = 2*(2)/(4)\left(\sin^2(A)-\cos^2(A)\right)\\\\2\sin(A+45)*\sin(A-45) = \sin^2(A)-\cos^2(A)\\\\

The identity is confirmed.

==========================================================

Part (d)


\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\\\\\sin(45+A) = \sin(45)\cos(A) + \cos(45)\sin(A)\\\\\sin(45+A) = (√(2))/(2)\cos(A) + (√(2))/(2)\sin(A)\\\\\sin(45+A) = (√(2))/(2)(\cos(A)+\sin(A))\\\\

Similarly,


\sin(45-A) = \sin(45 + (-A))\\\\\sin(45-A) = \sin(45)\cos(-A) + \cos(45)\sin(-A)\\\\\sin(45-A) = \sin(45)\cos(A) - \cos(45)\sin(A)\\\\\sin(45-A) = (√(2))/(2)\cos(A) - (√(2))/(2)\sin(A)\\\\\sin(45-A) = (√(2))/(2)(\cos(A)-\sin(A))\\\\

-----------------

We'll square each equation


\sin(45+A) = (√(2))/(2)(\cos(A)+\sin(A))\\\\\sin^2(45+A) = \left((√(2))/(2)(\cos(A)+\sin(A))\right)^2\\\\\sin^2(45+A) = (1)/(2)\left(\cos^2(A)+2\sin(A)\cos(A)+\sin^2(A)\right)\\\\\sin^2(45+A) = (1)/(2)\cos^2(A)+(1)/(2)*2\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\\sin^2(45+A) = (1)/(2)\cos^2(A)+\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\

and


\sin(45-A) = (√(2))/(2)(\cos(A)-\sin(A))\\\\\sin^2(45-A) = \left((√(2))/(2)(\cos(A)-\sin(A))\right)^2\\\\\sin^2(45-A) = (1)/(2)\left(\cos^2(A)-2\sin(A)\cos(A)+\sin^2(A)\right)\\\\\sin^2(45-A) = (1)/(2)\cos^2(A)-(1)/(2)*2\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\\sin^2(45-A) = (1)/(2)\cos^2(A)-\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\

--------------------

Let's compare the results we got.


\sin^2(45+A) = (1)/(2)\cos^2(A)+\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\\sin^2(45-A) = (1)/(2)\cos^2(A)-\sin(A)\cos(A)+(1)/(2)\sin^2(A)\right)\\\\

Now if we add the terms straight down, we end up with
\sin^2(45+A)+\sin^2(45-A) on the left side

As for the right side, the sin(A)cos(A) terms cancel out since they add to 0.

Also note how
(1)/(2)\cos^2(A)+(1)/(2)\cos^2(A) = \cos^2(A) and similarly for the sin^2 terms as well.

The right hand side becomes
\cos^2(A)+\sin^2(A) but that's always equal to 1 (pythagorean trig identity)

This confirms that
\sin^2(45+A)+\sin^2(45-A) = 1 is an identity

User Arthur Thomas
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories