221k views
12 votes
Someone please give me the answer for this

Someone please give me the answer for this-example-1

1 Answer

7 votes

Answer:

The magnitude of
\overrightarrow{AC} is
√(85).

Explanation:

There are two vectors:
\overrightarrow {AB} = \left(\begin{array}{ccc}6\\-9\end{array} \right),
\overrightarrow{CB} = \left(\begin{array}{ccc}1\\3\end{array}\right). From Linear Algebra, we have the following expressions:


\overrightarrow{AC} = \vec C - \vec A


\overrightarrow{AC} = (\vec C - \vec B) + (\vec B - \vec A)


\overrightarrow{CB} = -\overrightarrow {BC}


\overrightarrow{BC} = - \overrightarrow{CB}


\vec C - \vec B = -\overrightarrow {CB}


\overrightarrow{AB} = \vec B - \vec A

Then,


\overrightarrow{AC} = -\overrightarrow{CB}+\overrightarrow{AB}


\overrightarrow{AC} = -\left(\begin{array}{ccc}1\\3\end{array}\right)+\left(\begin{array}{ccc}6\\-9\end{array}\right)


\overrightarrow{AC} = \left(\begin{array}{ccc}7\\-6\end{array}\right)

The magnitude of
\overrightarrow{AC} is:


\|\overrightarrow{AC}\| = \sqrt{\overrightarrow{AC}\,\bullet\,\overrightarrow{AC}}


\|\overrightarrow{AC}\| = \sqrt{7^(2)+(-6)^(2)}


\|\overrightarrow{AC}\| = √(85)

User Siva Cn
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories