221k views
12 votes
Someone please give me the answer for this

Someone please give me the answer for this-example-1

1 Answer

7 votes

Answer:

The magnitude of
\overrightarrow{AC} is
√(85).

Explanation:

There are two vectors:
\overrightarrow {AB} = \left(\begin{array}{ccc}6\\-9\end{array} \right),
\overrightarrow{CB} = \left(\begin{array}{ccc}1\\3\end{array}\right). From Linear Algebra, we have the following expressions:


\overrightarrow{AC} = \vec C - \vec A


\overrightarrow{AC} = (\vec C - \vec B) + (\vec B - \vec A)


\overrightarrow{CB} = -\overrightarrow {BC}


\overrightarrow{BC} = - \overrightarrow{CB}


\vec C - \vec B = -\overrightarrow {CB}


\overrightarrow{AB} = \vec B - \vec A

Then,


\overrightarrow{AC} = -\overrightarrow{CB}+\overrightarrow{AB}


\overrightarrow{AC} = -\left(\begin{array}{ccc}1\\3\end{array}\right)+\left(\begin{array}{ccc}6\\-9\end{array}\right)


\overrightarrow{AC} = \left(\begin{array}{ccc}7\\-6\end{array}\right)

The magnitude of
\overrightarrow{AC} is:


\|\overrightarrow{AC}\| = \sqrt{\overrightarrow{AC}\,\bullet\,\overrightarrow{AC}}


\|\overrightarrow{AC}\| = \sqrt{7^(2)+(-6)^(2)}


\|\overrightarrow{AC}\| = √(85)

User Siva Cn
by
6.0k points