Answer:
![\tt \huge \boxed{ \boxed{\color{silver} { - 3x}^(2) + 6x - 4}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/w45l3qgjbngns0cmedliefgipzgsnl2f2t.png)
Explanation:
to understand this
you need to know about:
- algebra
- algebraic addition subtraction
- PEMDAS
tips and formulas:
- quadratic expression standard form:ax²+bx+c
- order of PEMDAS
- parentheses
- exponent
- multiplication or
- division
- addition
- subtraction
given:
to do
let's do:
![step - 1 : define]()
![\sf 4x + 7 - {8x}^(2) + 2x + {5x}^(2) - 11](https://img.qammunity.org/2022/formulas/mathematics/high-school/nx9otkwe3su5sjedaljczjzlex8fm0fm95.png)
![step - 2 : simplify](https://img.qammunity.org/2022/formulas/mathematics/high-school/z69ocb8dk3w20icbbsyzkz4d5ea342afuv.png)
![\tt \: rewrite : \\ \sf {8x}^(2) + {5x}^(2) + 4x + 2x + 7 - 11](https://img.qammunity.org/2022/formulas/mathematics/high-school/pqvivexxv1xv1pg75bmi0ucobkfivnmhu5.png)
![\tt \:combine \: like \: terms: \\ \sf { - 3x}^(2) + 6x + 7 - 11](https://img.qammunity.org/2022/formulas/mathematics/high-school/uh4ovd56t4emjimcd9q3984aosauhg0dim.png)
![\tt \: substrak : \\ \sf { - 3x}^(2) + 6x - 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/e2ktmaopwi30m4c9pxa1brxttfgl3e1nft.png)
therefore
we can see the expression is in standard form since a,b and c is -3,6 and -4
also let's justify it
substitute the value of a,b and c respectively
(-3)x²+(6)x+(-4)
-3x²+6x-4 (proven)