170k views
7 votes
Prove that (sec theta-cos theta) ( cot theta+tan theta) = tan theta ×sec theta​

1 Answer

11 votes

Given:


(\sec \theta \cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta

To prove:

The given statement.

Proof:

We have,


(\sec \theta -\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta

Taking LHS, we get


LHS=(\sec \theta -\cos \theta)(\cot \theta+\tan \theta)


LHS=((1)/(\cos \theta )-\cos \theta)((\cos \theta)/(\sin \theta)+(\sin \theta)/(\cos \theta))


LHS=((1-\cos^2 \theta )/(\cos \theta ))((\cos^2 \theta+\sin^2 \theta)/(\sin \theta\cos \theta))


LHS=((\sin^2 \theta )/(\cos \theta ))((1)/(\sin \theta\cos \theta))
[\because \cos^2 \theta+\sin^2 \theta=1]


LHS=((\sin \theta )/(\cos \theta ))((1)/(\cos \theta))


LHS=\tan \theta \sec \theta


LHS=RHS

Hence proved.

User Foobarna
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories