170k views
7 votes
Prove that (sec theta-cos theta) ( cot theta+tan theta) = tan theta ×sec theta​

1 Answer

11 votes

Given:


(\sec \theta \cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta

To prove:

The given statement.

Proof:

We have,


(\sec \theta -\cos \theta)(\cot \theta+\tan \theta)=\tan \theta \sec \theta

Taking LHS, we get


LHS=(\sec \theta -\cos \theta)(\cot \theta+\tan \theta)


LHS=((1)/(\cos \theta )-\cos \theta)((\cos \theta)/(\sin \theta)+(\sin \theta)/(\cos \theta))


LHS=((1-\cos^2 \theta )/(\cos \theta ))((\cos^2 \theta+\sin^2 \theta)/(\sin \theta\cos \theta))


LHS=((\sin^2 \theta )/(\cos \theta ))((1)/(\sin \theta\cos \theta))
[\because \cos^2 \theta+\sin^2 \theta=1]


LHS=((\sin \theta )/(\cos \theta ))((1)/(\cos \theta))


LHS=\tan \theta \sec \theta


LHS=RHS

Hence proved.

User Foobarna
by
4.8k points