Answer:
See Explanation
Explanation:
If a Function is differentiable at a point c, it is also continuous at that point.
but be careful, to not assume that the inverse statement is true if a fuction is Continuous it doest not mean it is necessarily differentiable, it must satisfy the two conditions.
- the function must have one and only one tangent at x=c
- the fore mentioned tangent cannot be a vertical line.
And
If function is differentiable at a point x, then function must also be continuous at x. but The converse does not hold, a continuous function need not be differentiable.
- For example, a function with a bend, cusp, or vertical tangent may be continuous, but fails to be differentiable at the location of the anomaly.