474,437 views
26 votes
26 votes
Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for the differential equation Q.2 Solve the Initial value problem ln(y ^ x) * (dy)/(dx) = 3x ^ 2 * y given y(2) = e ^ 3 . Q.3 Find the general solution for the given differential equation. (dy)/(dx) = (2x - y)/(x - 2y)

Q.1 Determine whether y = (c - e ^ x)/(2x); y^ prime =- 2y+e^ x 2x is a solution for-example-1
User Chander Shivdasani
by
2.6k points

1 Answer

21 votes
21 votes

(Q.1)


y = (C - e^x)/(2x) \implies y' = (-2xe^x-2C+2e^x)/(4x^2) = (-xe^x-C+e^x)/(2x^2)

Then substituting into the DE gives


(-xe^x-C+e^x)/(2x^2) = -(2\left((C-e^x)/(2x)\right) + e^x)/(2x)


(-xe^x-C+e^x)/(2x^2) = -(C-e^x + xe^x)/(2x^2)


(-xe^x-C+e^x)/(2x^2) = (-C+e^x - xe^x)/(2x^2)

and both sides match, so y is indeed a valid solution.

(Q.2)


\ln\left(y^x\right)(\mathrm dy)/(\mathrm dx) = 3x^2y

This DE is separable, since you can write
\ln\left(y^x\right)=x\ln(y). So you have


x\ln(y)(\mathrm dy)/(\mathrm dx) = 3x^2y


\frac{\ln(y)}y\,\mathrm dy = 3x\,\mathrm dx

Integrate both sides (on the left, the numerator suggests a substitution):


\frac12 \ln^2(y) = \frac32 x^2 + C

Given y (2) = e ³, we find


\frac12 \ln^2(e^3) = 6 + C


C = \frac12 *3^2 - 6 = -\frac32

so that the particular solution is


\frac12 \ln^2(y) = \frac32 x^2 - \frac32


\ln(y) = \pm√(3x^2 - 3)


\boxed{y = e^(\pm√(3x^2-3))}

(Q.3) I believe I've already covered in another question you posted.

User Xena
by
2.9k points