Given:
The vertices of the quadrilateral ABCD are A(3,8), B(6,5), C(5,4), and D(2,7).
To find:
Whether the given quadrilateral is a rectangle, a rhombus or a square.
Solution:
Distance formula: The distance between two points is
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/56st313bklvuad5kmg37orzosnah8k5ru7.png)
Using distance formula, the side lengths are:
![AB=√(\left(6-3\right)^2+\left(5-8\right)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ju99mfl7xsccas0r1iiu7xnugc4x0rnrgs.png)
![AB=√(\left(3\right)^2+\left(-3\right)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/8kpqq30rk2doh8tbrhcxnextsht54ijs3o.png)
![AB=√(9+9)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kloyhcfhf0tme5ux34u64r1gf9bu53qt4k.png)
![AB=√(18)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zwqk437tpq4ojlhd1atlj7ulq0yid65j5q.png)
![AB=3√(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ymio2k2hgevys7vqprvkjk0n1ldxovj11v.png)
Similarly,
![BC=√(\left(5-6\right)^2+\left(4-5\right)^2)=√(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9rym83ge3h08497103hh83nhaet8m5gtn7.png)
![CD=√(\left(2-5\right)^2+\left(7-4\right)^2)=3√(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/gz2zcdkp0oaal4kl8idxlwwrpop7q4pglh.png)
![AD=√(\left(2-3\right)^2+\left(7-8\right)^2)=√(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/sxpny4931411gluq2stb8cjs517f5h4x8z.png)
The length of diagonals are:
![AC=√(\left(5-3\right)^2+\left(4-8\right)^2)=2√(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i958ncuods8375wlnsdemd5curds8zfdys.png)
![BD=√(\left(2-6\right)^2+\left(7-5\right)^2)=2√(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2k6u8uipuhfi4hszs0cpvip5icr86noj1r.png)
From the above calculation, we conclude that the given quadrilateral has two pairs of congruent opposite sides and equal diagonals.
Opposite sides of a rectangle are equal and its diagonals are also equal.
Therefore, the given quadrilateral ABCD is a rectangle.