128k views
5 votes
Evaluate the following integral. Please show steps. (IMAGE BELOW)

Evaluate the following integral. Please show steps. (IMAGE BELOW)-example-1

1 Answer

4 votes

Answer:


(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}

Explanation:

Given indefinite integral:


\displaystyle \int (1+\sec^2(\ln x))/(7x)\; \text{d}x

To integrate the given integral, we can use the method of substitution.


\textsf{Let}\;\;u=\ln x

Differentiate u with respect to x:


\frac{\text{d}u}{\text{d}x}=(1)/(x)

Rearrange to isolate dx:


\text{d}x=x\;\text{d}u

Rewrite the original integral in terms of u and du:


\begin{aligned}\displaystyle \int (1+\sec^2(\ln x))/(7x)\; \text{d}x&=\int (1+\sec^2(u))/(7x)\cdot x\;\text{d}u\\\\&=\int (1+\sec^2(u))/(7)\;\text{d}u\end{aligned}

Take out the constant 1/7:


\displaystyle=(1)/(7)\int 1+\sec^2(u)\;\text{d}u

We can now evaluate the integral by using the following integration rules:


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\\\(where $n$ is any constant value) \end{minipage}}


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=(1)/(k) \tan kx\:\:(+\text{C})$\end{minipage}}

Therefore:


\begin{aligned}\displaystyle (1)/(7)\int 1+\sec^2(u)\;\text{d}u&=(1)/(7)\left[u+\tan u]+\text{C}\\\\&=(1)/(7)u+(1)/(7)\tan u +\text{C}\end{aligned}

Substitute back u = ln x:


=(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}

Therefore, the evaluation of the given integral is:


\large\boxed{\boxed{(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}}}

User Mohit Mathur
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories