128k views
5 votes
Evaluate the following integral. Please show steps. (IMAGE BELOW)

Evaluate the following integral. Please show steps. (IMAGE BELOW)-example-1

1 Answer

4 votes

Answer:


(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}

Explanation:

Given indefinite integral:


\displaystyle \int (1+\sec^2(\ln x))/(7x)\; \text{d}x

To integrate the given integral, we can use the method of substitution.


\textsf{Let}\;\;u=\ln x

Differentiate u with respect to x:


\frac{\text{d}u}{\text{d}x}=(1)/(x)

Rearrange to isolate dx:


\text{d}x=x\;\text{d}u

Rewrite the original integral in terms of u and du:


\begin{aligned}\displaystyle \int (1+\sec^2(\ln x))/(7x)\; \text{d}x&=\int (1+\sec^2(u))/(7x)\cdot x\;\text{d}u\\\\&=\int (1+\sec^2(u))/(7)\;\text{d}u\end{aligned}

Take out the constant 1/7:


\displaystyle=(1)/(7)\int 1+\sec^2(u)\;\text{d}u

We can now evaluate the integral by using the following integration rules:


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating a constant}\\\\$\displaystyle \int n\:\text{d}x=nx+\text{C}$\\\\(where $n$ is any constant value) \end{minipage}}


\boxed{\begin{minipage}{5.1 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=(1)/(k) \tan kx\:\:(+\text{C})$\end{minipage}}

Therefore:


\begin{aligned}\displaystyle (1)/(7)\int 1+\sec^2(u)\;\text{d}u&=(1)/(7)\left[u+\tan u]+\text{C}\\\\&=(1)/(7)u+(1)/(7)\tan u +\text{C}\end{aligned}

Substitute back u = ln x:


=(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}

Therefore, the evaluation of the given integral is:


\large\boxed{\boxed{(1)/(7)\ln x+(1)/(7)\tan (\ln x) +\text{C}}}

User Mohit Mathur
by
8.1k points

No related questions found