66.5k views
4 votes
Given the functions below, find f(g(x))

Given the functions below, find f(g(x))-example-1
User Emre Koc
by
7.9k points

2 Answers

1 vote

Answer :

  • Option (3) 4x² - 34x + 72

Given :

  • f(x) = x² - x
  • g(x) = 9 - 2x

To find :

  • f(g(x))

Solution :

We are given that,

  • f(x) = x² - x ....(1)

Also ,

  • g(x) = 9-2x....(2)

Substituting the value of g(x) in the function given,

  • f(g(x)) = (9-2x)² - (9-2x)
  • f(g(x)) = 4x² - 36x + 81 - 9 + 2x
  • f(g(x)) = 4x² - 36x + 2x + 72
  • f(g(x)) = 4x² - 34x + 72

Thus, option (3) 4x² - 34x + 72 is correct ✓.


\\

User Maritime
by
9.0k points
1 vote

Answer:


\textsf{C)} \quad 4x^2-34x+72

Explanation:

A composite function is a mathematical operation that combines two (or more) functions by applying one function's output as the input for another function to create a new function.

Given functions:


f(x)=x^2-x


g(x)=9-2x

To determine the composite function f(g(x)), substitute the output of function g(x) as the input of function f(x). In other words, replace the x-variable of function f(x) with function g(x).


\begin{aligned}f(g(x))&=f(9-2x)\\&=(9-2x)^2-(9-2x)\\&=(9-2x)(9-2x)-9+2x\\&=81-36x+4x^2-9+2x\\&=4x^2+2x-36x+81-9\\&=4x^2-34x+72\end{aligned}

Therefore, the composite function f(g(x)) is:


\Large\boxed{\boxed{f(g(x))=4x^2-34x+72}}

User Elvin Aghammadzada
by
8.7k points

No related questions found