96.6k views
2 votes
The area of a right triangle ABC is 7 and the perimeter is 14. What is the longer leg of the triangle?

1 Answer

3 votes

Answer:

The longer leg measures 4 + √2.

Explanation:

Let a = length of the short leg.

Let b = length of the long leg.

Let c = length of the hypotenuse.

area = ab/2

perimeter = a + b + c

Pythagorean theorem: a² + b² = c²

ab/2 = 7

a + b + c = 14

a² + b² = c²

ab = 14

a + b + c = 14

a² + b² = c²

b = 14/a

c = 14 - a - b

a² + b² = c²

b = 14/a

c = 14 - a - b

a² + 196/a² = (14 - a - b)²

a² + 196/a² = (14 - a - 14/a)²

a² + 196/a² = 196 - 14a - 196/a - 14a + a² + 14 - 196/a + 14 + 196/a²

0 = 196 - 14a - 196/a - 14a + 14 - 196/a + 14

0 = 196a - 14a² - 196 - 14a² + 14a - 196 + 14a

28a² - 224a + 392 = 0

a² - 8a + 14 = 0

a² - 8a + 16 = -14 + 16

(a - 4)² = 2

a - 4 = ±√2

a = 4 ± √2

Let a = 4 - √2 (short leg)

ab/2 = 7

(4 - √2)b/2 = 7

(4 - √2)b = 14

b = 14/(4 - √2)

b = 14/(4 - √2) × (4 + √2/(4 + √2)

b = 14(4 + √2)/(16 - 2)

b = 14(4 + √2)/14

b = 4 + √2 (long leg)

a + b + c = 14

4 + √2 + 4 - √2 + c = 14

8 + c = 14

c = 6 (hypotenuse)

Answer: The longer leg measures 4 + √2.

User ManishSB
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories