176k views
0 votes
Find (f•g)(x) when f(x)=sqrt x+3/x and g(x)=sqrt x+3/2x

I'm a bit stuck on whether it is B or C, so if anyone can explain or confirm my answer it would help !!

Find (f•g)(x) when f(x)=sqrt x+3/x and g(x)=sqrt x+3/2x I'm a bit stuck on whether-example-1
User MrGray
by
7.8k points

1 Answer

5 votes

Answer:


\textsf{C)} \quad (f \cdot g)(x)=(x+3)/(2x^2)

Explanation:

Given functions:


f(x)=(√(x+3))/(x)


g(x)=(√(x+3))/(2x)

To find (f · g)(x), multiply the two functions:


\begin{aligned}(f \cdot g)(x)&=f(x) \cdot g(x)\\\\&=(√(x+3))/(x) \cdot (√(x+3))/(2x)\\\\&=(√(x+3)√(x+3))/(x\cdot 2x)\end{aligned}


\textsf{Apply the radical rule:} \quad \sqrt{\vphantom{b}a}√(b)=√(ab)


\begin{aligned}&=(√((x+3)(x+3)))/(2x^2)\\\\&=(√((x+3)^2))/(2x^2)\end{aligned}


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


=(x+3)/(2x^2)

User Thomasbabuj
by
7.7k points

No related questions found