176k views
0 votes
Find (f•g)(x) when f(x)=sqrt x+3/x and g(x)=sqrt x+3/2x

I'm a bit stuck on whether it is B or C, so if anyone can explain or confirm my answer it would help !!

Find (f•g)(x) when f(x)=sqrt x+3/x and g(x)=sqrt x+3/2x I'm a bit stuck on whether-example-1
User MrGray
by
7.8k points

1 Answer

5 votes

Answer:


\textsf{C)} \quad (f \cdot g)(x)=(x+3)/(2x^2)

Explanation:

Given functions:


f(x)=(√(x+3))/(x)


g(x)=(√(x+3))/(2x)

To find (f · g)(x), multiply the two functions:


\begin{aligned}(f \cdot g)(x)&=f(x) \cdot g(x)\\\\&=(√(x+3))/(x) \cdot (√(x+3))/(2x)\\\\&=(√(x+3)√(x+3))/(x\cdot 2x)\end{aligned}


\textsf{Apply the radical rule:} \quad \sqrt{\vphantom{b}a}√(b)=√(ab)


\begin{aligned}&=(√((x+3)(x+3)))/(2x^2)\\\\&=(√((x+3)^2))/(2x^2)\end{aligned}


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


=(x+3)/(2x^2)

User Thomasbabuj
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories