68.4k views
3 votes
A 2.0 m tall object is 12.0 m from a convex lens that has a 4.0

m focal length. Determine the image size and distance from the
lens.?

User XMort
by
7.2k points

1 Answer

1 vote
Great question! To determine the image size and distance from the lens, we can use the lens formula:

1/f = 1/v - 1/u

where f is the focal length of the lens, v is the image distance, and u is the object distance.

Given that the focal length (f) is 4.0 m and the object distance (u) is 12.0 m, we can substitute these values into the formula:

1/4 = 1/v - 1/12

To solve for v, we need to rearrange the equation:

1/v = 1/4 + 1/12

1/v = (3 + 1)/12

1/v = 4/12

1/v = 1/3

Now, we can find the value of v by taking the reciprocal of both sides:

v = 3 meters

So, the image distance (v) is 3 meters.

To find the image size, we can use the magnification formula:

magnification (m) = -v/u

Given that the object height (h) is 2.0 meters, we can substitute these values into the formula:

m = -v/u = -3/12 = -1/4

The negative sign indicates that the image is inverted. The magnification value of -1/4 means that the image is one-fourth the size of the object.

Therefore, the image size is 1/4 of the object's height, which is 1/4 * 2.0 = 0.5 meters.

So, the image size is 0.5 meters and the image distance is 3 meters from the convex lens.

I hope this explanation helps! Let me know if you have any further questions.
User Chriss Paul
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.