105k views
0 votes
In △ABC,c=28 , m∠B=92 °, and a=38 . Find b .

1 Answer

3 votes

Answer:

20.9 units

Explanation:

To find side b in triangle ABC, we can use the Law of Cosines, which states:

\[ c^2 = a^2 + b^2 - 2ab \cdot \cos(B) \]

Given that \( B = 92° \), \( a = 38 \), and \( c = 28 \), let's calculate b:

\[ 28^2 = 38^2 + b^2 - 2 \cdot 38 \cdot b \cdot \cos(92°) \]

Now, calculate the value inside the cosine function:

\[ \cos(92°) \approx -0.139 \]

\[ 28^2 = 38^2 + b^2 - 2 \cdot 38 \cdot b \cdot (-0.139) \]

\[ 784 = 1444 + b^2 + 10.564b \]

Rearrange the equation:

\[ b^2 + 10.564b - 660 = 0 \]

Now, solve for b using the quadratic formula:

\[ b = \frac{-10.564 \pm \sqrt{10.564^2 - 4 \cdot 1 \cdot (-660)}}{2 \cdot 1} \]

\[ b = \frac{-10.564 \pm \sqrt{111.408496 + 2640}}{2} \]

\[ b = \frac{-10.564 \pm \sqrt{2751.408496}}{2} \]

\[ b = \frac{-10.564 \pm 52.46}{2} \]

Now, we'll have two possible solutions for b:

1. \( b = \frac{-10.564 + 52.46}{2} = \frac{41.896}{2} = 20.948 \)

2. \( b = \frac{-10.564 - 52.46}{2} = \frac{-63.024}{2} = -31.512 \)

Since we're dealing with a triangle, the length of a side cannot be negative. Therefore, we discard the negative solution.

So, side b is approximately 20.9 units.

User FabioCosta
by
9.1k points