10.3k views
0 votes
Algebra 1A help please thank you!!

Algebra 1A help please thank you!!-example-1

1 Answer

1 vote

Answer:


\large\text{$√(50)=\boxed{5√(2)}$}


\large\text{$√(50)=\boxed{5\cdot 2^{(1)/(2)}}$}


\large\text{$\sqrt[10]{2^5}=\boxed{2^{(1)/(2)}}$}

Explanation:

Given expression:


\large\text{$\sqrt[10]{2^5}\cdot 5 \cdot 2^{-(1)/(2)}-\frac{√(50)}{2^{(1)/(2)}}$}

To simplify the given expression, begin by simplifying and rewriting the radicals.

To simplify the radical √(50) using perfect square factors, we can rewrite 50 as the product of 5² · 2:


\large\text{$√(50)=√(5^2 \cdot 2)$}


\textsf{Apply the radical rule:} \quad √(ab)=\sqrt{\vphantom{b}a}√(b)


\large\text{$√(50)=√(5^2) √( 2)$}


\textsf{Apply the radical rule:} \quad √(a^2)=a, \quad a \geq 0


\large\text{$√(50)=5√(2)$}

The square root can be represented as a rational exponent of 1/2. Therefore:


\large\text{$√(50)=5\cdot 2^{(1)/(2)}$}

To rewrite
\sqrt[10]{2^5}, we can apply the exponent rule
\sqrt[n]{a^m}=a^{(m)/(n)}:


\large\text{$\sqrt[10]{2^5}=2^{(5)/(10)}=2^{(1)/(2)}$}

Therefore, the expression simplified by rewriting the radicals is:


\large\text{$2^{(1)/(2)}\cdot 5 \cdot 2^{-(1)/(2)}-\frac{5\cdot 2^{(1)/(2)}}{2^{(1)/(2)}}$}

To simplify further, cancel the common factor
2^{(1)/(2)} of the rational:


\large\text{$2^{(1)/(2)}\cdot 5 \cdot 2^{-(1)/(2)}-\frac{5\cdot \diagup\!\!\!\!\! 2^{(1)/(2)}}{\diagup\!\!\!\!\!2^{(1)/(2)}}$}


\large\text{$2^{(1)/(2)}\cdot 5 \cdot 2^{-(1)/(2)}-5$}


\textsf{Apply the exponent rule:} \quad a^b \cdot a^c=a^(b+c)


\large\text{$2^{(1)/(2)}\cdot 2^{-(1)/(2)}\cdot 5 -5$}


\large\text{$2^{(1)/(2)-(1)/(2)}\cdot 5 -5$}


\large\text{$2^(0)\cdot 5 -5$}

As any number to the power of zero is always 1:


\large\text{$1\cdot 5 -5$}


\large\text{$5 -5$}


\large\text{$0$}

Therefore, the expression is equal to zero.

User Tanou
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories