74.9k views
4 votes
F f ( 2 ) = 14 and f ' ( x ) ≥ 1 for 2 ≤ x ≤ 7 , how small can f ( 7 ) possibly be?

1 Answer

5 votes

Answer:

f(7) ≥ 19

Step-by-step explanation:To find the smallest possible value of f(7), we can use the Mean Value Theorem for Derivatives. According to this theorem, if a function f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one point c in (a, b) such that:

f'(c) = (f(b) - f(a))/(b - a)

In this case, we know that f(2) = 14 and f'(x) ≥ 1 for 2 ≤ x ≤ 7. Therefore, we can apply the Mean Value Theorem to the interval [2, 7] to get:

f'(c) = (f(7) - f(2))/(7 - 2)

Since f'(x) ≥ 1 for 2 ≤ x ≤ 7, we have:

1 ≤ f'(c) = (f(7) - 14)/5

Multiplying both sides by 5 and adding 14, we get:

f(7) ≥ 19

User Overloading
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories