41.7k views
0 votes
Determine the equation of each line.

B.) slope of 1/2, through (4,-4)

User Jjankowiak
by
8.1k points

2 Answers

3 votes

The answer is:


\rm{y=(1)/(2) x-6}

Work/explanation:

Given the slope and a point on the line, we can write the equation in point slope form, which is:


\rm{y-y_1=m(x-x_1)}

Where m is the slope and (x₁, y₁).

Plug the data in the formula:


\rm{y-(-4)=(1)/(2)(x-4)}

Simplify:


\rm{y+4=(1)/(2) (x-4)}

Now focus on the right side & simplify it :


\rm{y+4=(1)/(2)x-2}

Finally, subtract 4 on each side:


\rm{y=(1)/(2) x-2-4}

Simplify:


\rm{y=(1)/(2) x-6}

This is our equation in slope intercept form.

Therefore, the answer is y = 1/2x - 6.

User JiiB
by
9.0k points
5 votes

Answer:

y = 1/2 x - 6

Explanation:

y = mx + b

y = (1/2)x + b

-4 = (1/2) × 4 + b

-4 = 2 + b

b = -6

y = 1/2 x - 6

User Slotheroo
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.