49.9k views
1 vote
Sin^2 150 de grade + sin^2 60 de grade =1

User Gunwant
by
8.0k points

1 Answer

2 votes


\sf\sin^2 150^\circ + \sin^2 60^\circ = 1 \\

Step 1: Convert degrees to radians:


\sf\sin^2 \left((150\pi)/(180)\right) + \sin^2 \left((60\pi)/(180)\right) = 1 \\

Step 2: Simplify the expressions using the trigonometric identity:


\sf\sin^2 \left((\pi)/(6)\right) + \sin^2 \left((\pi)/(3)\right) = 1 \\

Step 3: Recall the values of sine for angles
\sf (\pi)/(6) \\ and
\sf (\pi)/(3) \\:


\sf\left((1)/(2)\right)^2 + \left((√(3))/(2)\right)^2 = 1 \\

Step 4: Evaluate the squares and simplify further:


\sf(1)/(4) + (3)/(4) = 1 \\

Step 5: Combine the fractions:


\sf(4)/(4) = 1 \\

Step 6: Simplify the fraction:


\sf1 = 1 \\

Thus, the equation
\sf \sin^2 150^\circ + \sin^2 60^\circ = 1 \\ is verified and true.

User Shmewnix
by
8.7k points

No related questions found