132k views
2 votes
Solve the following system of equations: \left\{\begin{array}{c l}

-x-6y-4z = 30\\
-4x-3y+z = 20\\
-x+y+5z = 10
\end{array}\right.

1 Answer

5 votes

To solve the system of equations, we can use the method of Gaussian elimination. Here are the steps:

Step 1: Write the system of equations in matrix form:


\begin{bmatrix}-1 & -6 & -4 \\ -4 & -3 & 1 \\ -1 & 1 & 5 \\ \end{bmatrix}\begin{bmatrix} x \\ y \\ z \\ \end{bmatrix}=\begin{bmatrix} 30 \\ 20 \\ 10 \\ \end{bmatrix}

Step 2: Apply row operations to transform the matrix into row-echelon form.


\begin{bmatrix}-1 & -6 & -4 & | & 30 \\ -4 & -3 & 1 & | & 20 \\ -1 & 1 & 5 & | & 10 \\ \end{bmatrix} \\

First, we will perform row 2 = row 2 + 4 * row 1 and row 3 = row 3 + row 1.


\begin{bmatrix}-1 & -6 & -4 & | & 30 \\ 0 & 21 & -15 & | & 110 \\ 0 & -5 & 1 & | & 40 \\ \end{bmatrix} \\

Next, we will perform row 2 = (1/21) * row 2 and row 3 = row 3 + (5/21) * row 2.


\begin{bmatrix}-1 & -6 & -4 & | & 30 \\ 0 & 1 & -5/7 & | & 20/7 \\ 0 & 0 & -10/7 & | & 70/7 \\ \end{bmatrix} \\

Finally, we will perform row 3 = (7/10) * row 3.


\begin{bmatrix}-1 & -6 & -4 & | & 30 \\ 0 & 1 & -5/7 & | & 20/7 \\ 0 & 0 & 1 & | & -1 \\ \end{bmatrix} \\

Step 3: Back-substitution

From the row-echelon form, we can read the values of x, y, and z:


\begin{align}\sf\:z &= -1 \\ y - (5)/(7)z &= (20)/(7) \\ y - (5)/(7)(-1) &= (20)/(7) \\ y + (5)/(7) &= (20)/(7) \\ y &= (20)/(7) - (5)/(7) \\ y &= (15)/(7) \\ x - 6y - 4z &= 30 \\ x - 6\left((15)/(7)\right) - 4(-1) &= 30 \\ x - (90)/(7) + (4)/(7) &= 30 \\ x &= 30 + (90)/(7) - (4)/(7) \\ x &= (210)/(7) + (90)/(7) - (4)/(7) \\ x &= (296)/(7) \\ \end{align} \\

Therefore, the solution to the system of equations is:


\begin{align}\sf\:x &= (296)/(7) \\ y &= (15)/(7) \\ z &= -1 \\ \end{align} \\

Please note that the solution is in fractional form. It can be simplified or expressed as a decimal if needed.

User Wanyu
by
7.8k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories