44.6k views
5 votes
a one-year zero coupon bond costs $ 99.43 $99.43 today. exactly one year from today, it will pay $ 100 $100. what is the annual yield-to-maturity of the bond? (i.e., what is the discount rate one needs to use to get the price of the bond given the future cash flow of $ 100 $100 in one year?)

User Lemuel
by
8.6k points

1 Answer

6 votes

Answer:

To calculate the annual yield-to-maturity (YTM) of a zero-coupon bond, we can use the formula:

YTM = (Face Value / Price)^(1/n) - 1

Where:

Face Value is the future cash flow (in this case, $100)

Price is the current price of the bond (in this case, $99.43)

n is the number of years until maturity (in this case, 1 year)

Using the given values, we can calculate the YTM:

YTM = ($100 / $99.43)^(1/1) - 1

= (1.0056765) - 1

≈ 0.0056765

Converting this decimal to a percentage, the annual yield-to-maturity of the bond is approximately 0.56765%.

Step-by-step explanation:

User Philselmer
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories