227k views
1 vote
7. Quadrilateral
STUV with vertices S(-3, -3),
T(3, -5), U(6, -7), and V(-2, -7): y = -4

7. Quadrilateral STUV with vertices S(-3, -3), T(3, -5), U(6, -7), and V(-2, -7): y-example-1

2 Answers

4 votes

Answer:

Explanation:

S=-3,3 T=3,-5 U=6,-7 V=2,-7

User Theannouncer
by
8.6k points
4 votes


\(S'(-3, -5), \, T'(3, -3), \, U'(6, -1), \, V'(-2, 1)\).

To find the images of the vertices S, T, U, and V of Quadrilateral STUV after a reflection across the line
\(y = -4\), we can use the formula for reflecting a point
\((x, y)\) across a horizontal line
\(y = k\):


\[ (x, y) \rightarrow (x, 2k - y) \]

In this case, the line of reflection is
\(y = -4\), so the formula becomes:


\[ (x, y) \rightarrow (x, -8 - y) \]

Now, apply this formula to each vertex:

1. S' ( _, _ )

For S(-3, -3):


\[ S'(-3, -8 - (-3)) \]


\[ S'(-3, -5) \]

2. T' ( _, _ )

For T(3, -5):


\[ T'(3, -8 - (-5)) \]


\[ T'(3, -3) \]

3. U' ( _, _ )

For U(6, -7):


\[ U'(6, -8 - (-7)) \]


\[ U'(6, -1) \]

4. V' ( _, _ )

For V(-2, -7):


\[ V'(-2, -8 - (-7)) \]


\[ V'(-2, 1) \]

Therefore, the images of the vertices after the reflection are:


\[ S'(-3, -5), \, T'(3, -3), \, U'(6, -1), \, V'(-2, 1) \]

User Jareth
by
7.9k points