Answer:
m∠DAC = 21°
Explanation:
Exterior Angle Theorem
The exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles of the triangle.
Apply the Exterior Angle Theorem to triangle ACD and solve for x:
⇒ m∠DAC + m∠ACD = m∠ACH
⇒ (1 - 4x) + (2 - 15x) = 2x + 108
⇒ -4x - 15x + 1 + 2 = 2x + 108
⇒ -19x + 3 = 2x + 108
⇒ -19x + 3 = 2x + 108
⇒ -21x + 3 = 108
⇒ -21x = 105
⇒ x = -5
Substitute the found value of x into the expression for angle DAC:
⇒ m∠DAC = 1 - 4x
⇒ m∠DAC = 1 - 4(-5)
⇒ m∠DAC = 1 + 20
⇒ m∠DAC = 21°
Therefore, the measure of angle DAC is 21°.