$\implies\textbf\sf\:(ab)c\:=\:\left(\frac{a+b}{2}\:+\:ab\right)c$
$\longrightarrow\textbf\sf\:=$ $\sf\textbf\:\left[\left(\frac{a+b}{2}\:+\:ab\right)+c\right]\cdot\frac{\left(\frac{a+b}{2}\:+\:ab\right)c}{2}$
$\longrightarrow\textbf\sf\:=\:\left(\frac{a+b}{2}\:+\:ab\:+\:c\right)\cdot\frac{ac+bc+2ab}{2}$
$\longrightarrow\textbf\sf\:=\:\frac{a+b}{2}\cdot\frac{ac+bc+2ab}{2}\:+\:ab\cdot\frac{ac+bc+2ab}{2}\:+\:c\cdot\frac{ac+bc+2ab}{2}$
$\longrightarrow\sf\:=\:\frac{a(ac+bc+2ab)+b(ac+bc+2ab)}{4} + \frac{2ab(ac+bc+2ab)}{4} + \frac{c(ac+bc+2ab)}{2}$
$\longrightarrow\sf\:=\: \frac{a^2c+ab^2+2a^2b+2ab^2+b^2c+2abc}{4} + \frac{2abc+2a^2bc+2ab^2c+4a^2b^2}{4} + \frac{ac^2+bc^2+2abc}{2}$
$\longrightarrow\sf\:=\: \frac{2a^2b+2ab^2+2a^2bc+2ab^2c+4a^2b^2}{4} + \frac{a^2c+ab^2+b^2c+ac^2+bc^2+4abc+2a^2bc}{4}$
$\longrightarrow\sf\:=\: \frac{2ab(a+b+bc+2ab)}{4} + \frac{(a+b)(c(a+b)+2ab)+4abc}{4}$
$\longrightarrow\sf\textbf\:=\:\frac{(a+b)(2ab+bc+a+b+c+2ab)+4abc}{4}$
$\longrightarrow\sf\textbf\:=\:\frac{(a+b)(4ab+bc+a+b+c)}{4} + abc$
$\longrightarrow\textbf\sf\:=\:\frac{(a+b)}{2}\cdot\frac{(2a+2b+bc)+2(a+b+c)}{2} + abc$
$\longrightarrow\textbf\sf\text\:=\: (abc)+(a+b+c)\frac{a+b+bc}{2}$
$\longrightarrow\textbf\sf\:=\:a(bc)+\frac{a+b+c}{2}(b+c)+abac$
$\longrightarrow\textbf\sf\:=\:a(bc)+\frac{a+b}{2}(b+c)+\frac{ab+ac+bc}{2}$
$\longrightarrow\red\bigstar\textbf\sf{\boxed{=\:a(bc)+(ab)(ac)}}$



