Explanation:
To solve for x, we need to isolate the variable on one side of the equation. We can start by subtracting 65 from both sides of the equation:
$12715 - 65 = x^2 - 5x
Simplifying:
$12650 = x^2 - 5x
Next, we can move all terms to one side of the equation:
x^2 - 5x - 12650 = 0
Now, we can use the quadratic formula to solve for x:
x = [-(-5) ± sqrt((-5)^2 - 4(1)(-12650))]/(2(1))
Simplifying:
x = [5 ± sqrt(63225)]/2
x = [5 ± 251]/2
So the solutions are:
x = (5 + 251)/2 = 128
x = (5 - 251)/2 = -123
Therefore, x can be either 128 or -123.