126k views
3 votes
Please answer the question

Please answer the question-example-1
User Parcydarks
by
8.5k points

2 Answers

3 votes

Answer:


  • x = 50\sqrt2

  • p = 141.4 \ ft

  • h = 424.2 \ ft

Explanation:

To find:-

  • The value of x .

Answer:-

Here we are given a right angled triangle with the side measures as , 2x , 6x and 400 ( unit is ft.) . To find out the value of "x" , we shall use Pythagoras theorem .

It is as follows,

Pythagoras theorem :-

  • In a right angled triangle , the sum of squares of base and perpendicular is equal to the square of hypotenuse.

Mathematically, if
p is the perpendicular ,
b is the base, and
h is the hypotenuse, then ;


\longrightarrow p^2+b^2=h^2\\

From the given triangle, we can see that,

  • perpendicular = 2x
  • base = 400
  • hypotenuse = 6x

On substituting the respective values, we have;


\longrightarrow (2x)^2 + (400)^2 = (6x)^2 \\


\longrightarrow 4x^2 + 160000 = 36x^2 \\


\longrightarrow 36x^2-4x^2=160000 \\


\longrightarrow 32x^2 = 160000\\


\longrightarrow x^2=(160000)/(32) \\


\longrightarrow x^2 = 5000 \\


\longrightarrow x =√(5* 10^3)\\


\longrightarrow x =√( 5 (10)^2(5)(2)) \\


\longrightarrow x = 10(5)√(2)\\


\longrightarrow \red{ x = 50\sqrt2} \\

Hence the value of x is 502 .

To find out the values of the sides , plug in the value of x in the given expressions for the sides as ,


\longrightarrow p = 2x \\


\longrightarrow p =2(50\sqrt2)\\


\longrightarrow p = 100\sqrt2 = 100* 1.414\\


\longrightarrow \boxed{ p = 141.4 \ ft.} \\

Similarly,


\longrightarrow h = 6x = 6(50\sqrt2) \\


\longrightarrow h = 300\sqrt2 = 300(1.414)\\


\longrightarrow \boxed{ h = 424.2 \ ft } \\

This is the required answer.

User Jay Taylor
by
8.0k points
6 votes

Answer:


x = 50√(2)


\textsf{Leg\;$2x$}=141.4\; \sf ft\;(nearest\;tenth)


\textsf{Hypotenuse\;$6x$}=424.3\; \sf ft\;(nearest\;tenth)

Explanation:

To solve the given problem, use Pythagoras Theorem.


\boxed{\begin{minipage}{9 cm}\underline{Pythagoras Theorem} \\\\$a^2+b^2=c^2$\\\\where:\\ \phantom{ww}$\bullet$ $a$ and $b$ are the legs of the right triangle. \\ \phantom{ww}$\bullet$ $c$ is the hypotenuse (longest side) of the right triangle.\\\end{minipage}}

From inspection of the given right triangle:


  • a = 2x

  • b = 400

  • c = 6x

Substitute the values of a, b and c into the formula and solve for x:


\implies (2x)^2+400^2=(6x)^2


\implies 4x^2+160000=36x^2


\implies 4x^2+160000-4x^2=36x^2-4x^2


\implies 160000=32x^2


\implies 32x^2=160000


\implies (32x^2)/(32)=(160000)/(32)


\implies x^2=5000


\implies √(x^2)}=√(5000)


\implies x=√(5000)


\implies x=√(2500 \cdot 2)


\implies x=√(2500)√(2)


\implies x=50√(2)

Therefore, the value of x is 50√2.

To find the measures of the side lengths, substitute the found value of x into the expression for each side.


\begin{aligned}\textsf{Leg\;$2x$}&=2 \cdot 50 √(2)\\&=100√(2)\\&=141.421356...\\&=141.4\; \sf ft\;(nearest\;tenth)\end{aligned}


\begin{aligned}\textsf{Hypotenuse\;$6x$}&=6 \cdot 50 √(2)\\&=300√(2)\\&=424.264068...\\&=424.3\; \sf ft\;(nearest\;tenth)\end{aligned}

Therefore, the side lengths of the given right triangle to the nearest tenth are:

  • 400 ft
  • 141.4 ft
  • 424.3 ft
User Abid
by
7.5k points