39.9k views
2 votes
In a heat engine, 700 J of heat enters the system, and the piston does 400 J of work.

What is the final internal (thermal) energy of the system if the initial energy is 1200 J?

Responses

300 J

300 J

900 J

900 J

1100 J

1100 J,

1500 J

User Lecardo
by
7.8k points

1 Answer

5 votes

Answer:

2300J

Step-by-step explanation:

The first law of thermodynamics states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system:

ΔU = Q - W

Where ΔU is the change in internal energy, Q is the heat added to the system, and W is the work done by the system.

In this case, ΔU is what we want to find, Q is 700 J, and W is -400 J (note that the work done by the system is negative because it is done on the surroundings). Substituting these values into the equation:

ΔU = Q - W

ΔU = 700 J - (-400 J)

ΔU = 700 J + 400 J

ΔU = 1100 J

The final internal energy of the system is therefore 1100 J + the initial energy of 1200 J, which equals 2300 J.

User Alan Featherston
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.