Explanation:
The fourth degree Taylor polynomial for f(x) centered at x = -8 can be expressed as:
P4(x) = f(-8) + f'(-8)(x + 8) + [f''(-8)/2!](x + 8)^2 + [f(3)(-8)/3!](x + 8)^3 + [f(4)(-8)/4!](x + 8)^4
Substituting the given values, we get:
P4(x) = -3 - 2(x + 8) - [14/2!](x + 8)^2 - [(-4)/3!](x + 8)^3 - [(-13)/4!](x + 8)^4
Simplifying, we get:
P4(x) = -3 - 2(x + 8) - 7(x + 8)^2/2 + 2(x + 8)^3/3! - 13(x + 8)^4/4!
Therefore, the fourth degree Taylor polynomial for f(x) centered at x = -8 is:
P4(x) = -3 - 2(x + 8) - 7(x + 8)^2/2 + 2(x + 8)^3/6 - 13(x + 8)^4/24