229k views
22 votes
Write the following in exponential form.

50 points - please show all work - thanks.

Write the following in exponential form. 50 points - please show all work - thanks-example-1
User MohitC
by
4.2k points

2 Answers

1 vote

Answer:


\huge \boxed{ \boxed{ \red{{3}^{ (1)/(2) } {x}^{ (1)/(4) } {y}^{ - (9 )/(8) } }}}

Explanation:

to understand this

you need to know about:

  • law of exponent
  • PEMDAS

given:


  • \sf \sqrt[8]{81 {x}^(2) {y}^( - 9) }

to do:

  • simplification

tips and formulas:


  1. \tt \sqrt[n]{x} < = > {x}^{ (1)/(n) }

  2. \displaystyle \sf( {x}^(m) {)}^(n) < = > {x}^(m n)

let's solve:


step - 1 : define


\sf \sqrt[8]{81 {x}^(2) {y}^( - 9) }


step - 2 : solve


  1. \sf rewrite \: 81 \: as \: {3}^(4) : \\ \sf\sqrt[8]{ {3}^(4) {x}^(2) {y}^( - 9) }

  2. \sf use \: {1}^(st) \: formula : \\ \sf( {3}^(4) {x}^(2) {y}^( - 9) {)}^{ (1)/(8) }

  3. \sf use \: {2}^(nd) \: formula : \\ \sf {3}^{4* (1)/(8) } * {x}^{2 * (1)/(8) } * {y}^{ - 9 * (1)/(8) }

  4. \sf \: simplify : \\ \sf {3}^{ (4)/(8) } {x}^{ (2)/(8) } {y}^{ ( - 9)/(8) } \\ \therefore \sf {3}^{ (1)/(2) } {x}^{ (1)/(4) } {y}^{ - (9 )/(8) }
User Yati Sawhney
by
4.5k points
6 votes

Answer:

Given expression:


  • \sqrt[8]{81x^2y^(-9)}

Exponential form of this expression is:


  • ({81x^2y^(-9)})^(1/8)

Further simplification if needed:


  • ({81x^2y^(-9)})^(1/8) =

  • (3^4)^(1/8)(x^2)^(1/8)(y^(-9))^(1/8) =

  • 3^(1/2)x^(1/4)y^(-9/8)
User BrunoLevy
by
4.4k points