155k views
4 votes
If y= cos x - sin x /cos x + sin x then dy /dx is :​

1 Answer

6 votes

Answer:

Explanation:

We can find dy/dx by differentiating y with respect to x using the quotient rule.

First, we need to rewrite y using the trigonometric identity for the tangent of the difference of two angles:

y = (cos x - sin x)/(cos x + sin x) = [(cos x - sin x)/(cos x + sin x)] * [(cos x - sin x)/(cos x - sin x)]

y = (cos^2 x - 2cos x sin x + sin^2 x)/(cos^2 x - 2sin x cos x + sin^2 x)

y = (cos 2x - sin 2x)/(cos 2x + sin 2x)

Now we can apply the quotient rule:

dy/dx = [(-sin 2x - cos 2x)(cos 2x + sin 2x) - (cos 2x - sin 2x)(-sin 2x + cos 2x)]/(cos 2x + sin 2x)^2

dy/dx = (-sin^2 2x - cos^2 2x - 2sin 2x cos 2x + sin^2 2x + cos^2 2x + 2sin 2x cos 2x)/(cos 2x + sin 2x)^2

dy/dx = 0/(cos 2x + sin 2x)^2

Therefore, dy/dx = 0.

User Adelb
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories