56.0k views
22 votes
Find the radius of the circle. The center of the circle is (2, -3) and a point that lies on the circle is (-1, -2).

User EOnOe
by
5.8k points

1 Answer

6 votes

Answer:


\displaystyle r = √(10)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Geometry

  • Definition of a radius - the center of a circle to any point to the circumference

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Center (2, -3) → x₁ = 2, y₁ = -3

Circumference point (-1, -2) → x₂ = -1, y₂ = -2

In this case, the distance d from the center to the circumference point would be the radius r of the circle.

Step 2: Find Radius r

  1. [Distance Formula] Define equation [Radius]:
    \displaystyle r = √((x_2-x_1)^2+(y_2-y_1)^2)
  2. Substitute in points [Radius]:
    \displaystyle r = √((-1-2)^2+(-2--3)^2)
  3. [Radius] [√Radical] (Parenthesis) Simplify:
    \displaystyle r = √((-1-2)^2+(-2+3)^2)
  4. [Radius] [√Radical] (Parenthesis) Subtract/Add:
    \displaystyle r = √((-3)^2+(1)^2)
  5. [Radius] [√Radical] Evaluate exponents:
    \displaystyle r = √(9+1)
  6. [Radius] [√Radical] Add:
    \displaystyle r = √(10)
User Eeq
by
4.8k points