56.0k views
22 votes
Find the radius of the circle. The center of the circle is (2, -3) and a point that lies on the circle is (-1, -2).

User EOnOe
by
9.2k points

1 Answer

6 votes

Answer:


\displaystyle r = √(10)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Coordinates (x, y)

Geometry

  • Definition of a radius - the center of a circle to any point to the circumference

Algebra II

  • Distance Formula:
    \displaystyle d = √((x_2-x_1)^2+(y_2-y_1)^2)

Explanation:

Step 1: Define

Center (2, -3) → x₁ = 2, y₁ = -3

Circumference point (-1, -2) → x₂ = -1, y₂ = -2

In this case, the distance d from the center to the circumference point would be the radius r of the circle.

Step 2: Find Radius r

  1. [Distance Formula] Define equation [Radius]:
    \displaystyle r = √((x_2-x_1)^2+(y_2-y_1)^2)
  2. Substitute in points [Radius]:
    \displaystyle r = √((-1-2)^2+(-2--3)^2)
  3. [Radius] [√Radical] (Parenthesis) Simplify:
    \displaystyle r = √((-1-2)^2+(-2+3)^2)
  4. [Radius] [√Radical] (Parenthesis) Subtract/Add:
    \displaystyle r = √((-3)^2+(1)^2)
  5. [Radius] [√Radical] Evaluate exponents:
    \displaystyle r = √(9+1)
  6. [Radius] [√Radical] Add:
    \displaystyle r = √(10)
User Eeq
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories