19.1k views
15 votes
Solve the Anti derivative.​

Solve the Anti derivative.​-example-1
User Huuuk
by
8.2k points

1 Answer

11 votes

Answer:


\displaystyle \int {(1)/(9x^2+4)} \, dx = (1)/(6)arctan((3x)/(2)) + C

General Formulas and Concepts:

Algebra I

  • Factoring

Calculus

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:
\displaystyle \int {(du)/(a^2 + u^2)} = (1)/(a)arctan((u)/(a)) + C

Explanation:

Step 1: Define


\displaystyle \int {(1)/(9x^2 + 4)} \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Factor fraction denominator:
    \displaystyle \int {(1)/(9(x^2 + (4)/(9)))} \, dx
  2. [Integral] Integration Property - Multiplied Constant:
    \displaystyle (1)/(9) \int {(1)/(x^2 + (4)/(9))} \, dx

Step 3: Identify Variables

Set up u-substitution for the arctan trig integration.


\displaystyle u = x \\ a = (2)/(3) \\ du = dx

Step 4: Integrate Pt. 2

  1. [Integral] Substitute u-du:
    \displaystyle (1)/(9) \int {(1)/(u^2 + ((2)/(3))^2) \, du
  2. [Integral] Trig Integration:
    \displaystyle (1)/(9)[(1)/((2)/(3))arctan((u)/((2)/(3)))] + C
  3. [Integral] Simplify:
    \displaystyle (1)/(9)[(3)/(2)arctan((3u)/(2))] + C
  4. [integral] Multiply:
    \displaystyle (1)/(6)arctan((3u)/(2)) + C
  5. [Integral] Back-Substitute:
    \displaystyle (1)/(6)arctan((3x)/(2)) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

User Nik Burns
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories