19.0k views
15 votes
Solve the Anti derivative.​

Solve the Anti derivative.​-example-1
User Huuuk
by
4.9k points

1 Answer

11 votes

Answer:


\displaystyle \int {(1)/(9x^2+4)} \, dx = (1)/(6)arctan((3x)/(2)) + C

General Formulas and Concepts:

Algebra I

  • Factoring

Calculus

Antiderivatives - integrals/Integration

Integration Constant C

U-Substitution

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Trig Integration:
\displaystyle \int {(du)/(a^2 + u^2)} = (1)/(a)arctan((u)/(a)) + C

Explanation:

Step 1: Define


\displaystyle \int {(1)/(9x^2 + 4)} \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Factor fraction denominator:
    \displaystyle \int {(1)/(9(x^2 + (4)/(9)))} \, dx
  2. [Integral] Integration Property - Multiplied Constant:
    \displaystyle (1)/(9) \int {(1)/(x^2 + (4)/(9))} \, dx

Step 3: Identify Variables

Set up u-substitution for the arctan trig integration.


\displaystyle u = x \\ a = (2)/(3) \\ du = dx

Step 4: Integrate Pt. 2

  1. [Integral] Substitute u-du:
    \displaystyle (1)/(9) \int {(1)/(u^2 + ((2)/(3))^2) \, du
  2. [Integral] Trig Integration:
    \displaystyle (1)/(9)[(1)/((2)/(3))arctan((u)/((2)/(3)))] + C
  3. [Integral] Simplify:
    \displaystyle (1)/(9)[(3)/(2)arctan((3u)/(2))] + C
  4. [integral] Multiply:
    \displaystyle (1)/(6)arctan((3u)/(2)) + C
  5. [Integral] Back-Substitute:
    \displaystyle (1)/(6)arctan((3x)/(2)) + C

Topic: AP Calculus AB

Unit: Integrals - Arctrig

Book: College Calculus 10e

User Nik Burns
by
5.2k points