163k views
5 votes
In the diagram, BCE and ACD are straight lines. AB =2a and

BC= 3b. The point C divides AD in the ratio 2 : 1 and divides BE
in the ratio 3: 1. Express in terms of a and b, the vectors:
(a) AC->
(c) CE->
(b) CD->
(d) ED->

In the diagram, BCE and ACD are straight lines. AB =2a and BC= 3b. The point C divides-example-1

2 Answers

0 votes

Answer:


\textsf{a)}\quad \overrightarrow{AC}=2a+3b


\textsf{b)}\quad \overrightarrow{CE}=b


\textsf{c)}\quad \overrightarrow{CD}=a+(3)/(2)b


\textsf{d)}\quad \overrightarrow{ED}=a+(1)/(2)b

Explanation:

Part (a)

To find vector AC, we can add vectors AB and BC.


\overrightarrow{AC}=\overrightarrow{AB}+\overrightarrow{BC}

Given that AB = 2a and BC = 3b, then:


\overrightarrow{AC}=2a+3b


\hrulefill

Part (b)

If point C divides BE in the rato 3 : 1, then:


\overrightarrow{BC}:\overrightarrow{CE}=3:1

Given that BC = 3b, then:


3b:\overrightarrow{CE}=3:1


\overrightarrow{CE}=b


\hrulefill

Part (c)

If point C divides AD in the rato 2 : 1, then:


\overrightarrow{AC}:\overrightarrow{CD}=2:1

Given that AC = 2a + 3b from part (a), then:


\overrightarrow{2a+3b}:\overrightarrow{CD}=2:1

Therefore:


\overrightarrow{CD}=(2a+3b)/(2)


\overrightarrow{CD}=a+(3)/(2)b


\hrulefill

Part (d)

To find vector ED, we can add vectors EC and CD:


\overrightarrow{ED}=\overrightarrow{EC}+\overrightarrow{CD}

Substituting CD = a + ³/₂b from part (c) givens:


\overrightarrow{ED}=\overrightarrow{EC}+a+(3)/(2)b

Given that CE = b, then EC = -b. Therefore:


\overrightarrow{ED}=-b+a+(3)/(2)b


\overrightarrow{ED}=a+(1)/(2)b

User Scatolone
by
8.2k points
6 votes

Answer:


\sf \overrightarrow{AC } = 2a+3b


\sf \overrightarrow{CE } = b


\sf \overrightarrow{CD } = a + (3b)/(2)


\sf \overrightarrow{ED} = a + (1)/(2)b

Explanation:

Given:

  • BCE and ACD are straight lines.

  • \sf \overrightarrow{AB } = 2a

  • \sf \overrightarrow{BC } = 3b
  • The point C divides AD in the ratio 2 : 1 and divides B in the ratio 3: 1.

To find:


  • \sf \overrightarrow{AC } = ?

  • \sf \overrightarrow{CE } = ?

  • \sf \overrightarrow{CD } = ?

  • \sf \overrightarrow{ED} = ?

Solution:

We can use the Triangle Law of the vector to find the magnitude and direction of the resultant vector.

Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.

Thus, we get


\sf \overrightarrow{AC } = \overrightarrow{AB }+ \overrightarrow{BC }


\sf \overrightarrow{AC } = 2a+3b


\sf \hrulefill

it is given that


\sf \frac{ \overrightarrow{BC }} {\overrightarrow{CE }} =(3)/(1)


\sf \frac{ \overrightarrow{3b }} {\overrightarrow{CE }} =(3)/(1)


\sf \overline{CE }=(3b)/(3)


\sf \overrightarrow{CE } = b


\sf \hrulefill

It is given that
\sf \overrightarrow{AC }:\overrightarrow{CD } = 2:1


\sf \frac{ \overrightarrow{AC } } {\overrightarrow{CD }} =(2)/(1)


\sf \frac{ 2a +3b } {\overrightarrow{CD }} =(2)/(1)


\sf \overrightarrow{CD } =( 2a + 3b)/(2)


\sf \overrightarrow{CD } = a + (3b)/(2)


\sf \hrulefill

Now, consider ∆CED, and apply the triangle law of addition of two vectors, we get


\sf \overrightarrow{ED} = \overrightarrow{EC} + \overrightarrow{CD}


\sf \overrightarrow{ED} = -b + a + (3b)/(2)


\sf \overrightarrow{ED} = a + (-2b +3b)/(2)


\sf \overrightarrow{ED} = a + (1)/(2)b

Summary:


\sf \overrightarrow{AC } = 2a+3b


\sf \overrightarrow{CE } = b


\sf \overrightarrow{CD } = a + (3b)/(2)


\sf \overrightarrow{ED} = a + (1)/(2)b

User Pan Thomakos
by
7.5k points